

1.11

Analysis Report AP-070 Page 1 of 28

Analysis Report for AP-070

Analysis of the H-10cR Pumping Test Conducted From 7/24/17 to 7/27/17

AP-070: Analysis Plan for Hydraulic-Test Interpretations

Task Number 4.4.2.3.1

Authors:

Dale O. Bowman, II, 8882 HydroResolutions LLC

26/17 Date

9/26/17

Date

Technical Review:

QA Review:

- FOR KEES KUHLMAN

Kristopher L. Kuhlman, 8844 Applied Systems Analysis & Research Department

Information Only

Steve Davis, 8880 John Hart and Associates

126/17

Management Review:

Christi Leigh, 8882 **Repository Performance Department**

WIPP:4.4.2.3.1:TD:QA-L:RECERT:PKG# 539221

Contents

1.4.4

1.	Introduction	.4
2.	Test and Analysis Procedures	.5
3.	H-10cR Analysis Results	.7
	3.1. H-10cR	7
4.	References1	15
Appe	ndix A – H-10cR Pumping Test – 7/24/17 to 7/27/171	16
Appe	endix B – nSIGHTS Listings	17
Appe	endix C – File Directories	26
I.L.		

Tables

Table 1.	Culebra	Transmissivity a	and S	Storativity	Estimates	 	7
Table 2.	Variable	Transmissivity	Time	Intervals.		 	9

Figures

Figure 1. WIPP stratigraphy.	4
Figure 2. Location of the H-10cR Culebra well on the H-10 wellpad designated by a blue	е
star	6
Figure 3. H-10cR model comparison.	8
Figure 4. H-10cR well configuration during testing	9
Figure 5. The 72-hour pumping test at H-10cR1	0
Figure 6. Pressure data and 359 model fits of the H-10cR pumping test 1	0
Figure 7. X-Y scatter plot showing the transmissivity (T1) parameter space derived from	
the H-10cR test perturbation analysis with fit discriminant and best fit values	1
Figure 8. X-Y scatter plot showing the transmissivity (T ₂) parameter space derived from	
the H-10cR test perturbation analysis with fit discriminant and best fit values	1
Figure 9. X-Y scatter plot showing the transmissivity (T ₃) parameter space derived from	
the H-10cR test perturbation analysis with fit discriminant and best fit values	2
Figure 10. X-Y scatter plot showing the transmissivity (T ₄) parameter space derived	
from the H-10cR test perturbation analysis with fit discriminant and best fit values 1	2
Figure 11. X-Y scatter plot showing the transmissivity (T ₅) parameter space derived	
from the H-10cR test perturbation analysis with fit discriminant and best fit values 1	3
Figure 12. X-Y scatter plot showing the all estimated transmissivities in parameter	
space derived from the H-10cR test perturbation analysis with fit discriminant	3
Figure 13. X-Y scatter plot showing the storativity parameter space derived from the	
H-10cR test perturbation analysis with fit discriminant and best fit values	1
Figure 14. Log-log plot showing 359 simulations of the H-10cR drawdown period	
pressure change and derivative response.	1
Figure 15. Log-log plot showing 359 simulations of the H-10cR recovery period pressure	9
change and derivative response1	>

Appendix B Figures

Figure B-1. X-Y scatter plot showing the skin zone conductivity parameter space derived from H-10cR perturbation analysis with the fit discriminant and best fit values. 22 Figure B-2. X-Y scatter plot showing the skin zone specific storage parameter space derived from H-10cR perturbation analysis with the fit discriminant and best fit values. 23 Figure B-3. X-Y scatter plot showing the skin zone thickness parameter space derived Figure B-4. X-Y scatter plot showing the time parameter space derived from H-10cR perturbation analysis for the first transmissivity (T_1) with the fit discriminant and best fit Figure B-5. X-Y scatter plot showing the time parameter space derived from H-10cR perturbation analysis for the second transmissivity (T_2) with the fit discriminant and best Figure B-6. X-Y scatter plot showing the time parameter space derived from H-10cR perturbation analysis for the third transmissivity (T_3) with the fit discriminant and best fit Figure B-7. X-Y scatter plot showing the time parameter space derived from H-10cR perturbation analysis for the fourth transmissivity (T₄) with the fit discriminant and best fit Figure B-8. X-Y scatter plot showing the time parameter space derived from H-10cR perturbation analysis for the fifth transmissivity (T_5) with the fit discriminant and best fit

Analysis Report AP-070 Page 4 of 28

1. Introduction

This report discusses the analyses of hydraulic tests performed in the Culebra Dolomite Member (Culebra) of the Rustler Formation (Figure 1) at the Waste Isolation Pilot Plant (WIPP) site at the H-10 well pad (Figure 2). These analyses were performed in accordance with the Sandia National Laboratories (SNL) Analysis Plan for Hydraulic-Test Interpretations, AP-070, Revision 2 (Beauheim, 2009). The computer code used for analysis was nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator), version 2.50. A detailed description of the approach followed in these analyses can be found in Beauheim et al. (1993, Appendix B) and Roberts et al. (1999, Chapter 6).

TRI-5801-97-0

2. Test and Analysis Procedures

A 72-hour constant rate pumping test was performed on well H-10cR from July 24 to 27, 2017. The location of the H-10cR well pad in the WIPP well network is shown in Figure 2. The well had been subject to approximately a year of development prior to this test through 14 separate purges. The test produced 1525 gallons of brine.

The main objective of this analysis is to estimate formation transmissivity (T) for subsequent use in *T*-field generation and WIPP performance assessment calculations. Test analysis involved finding the values of the fitting parameters that produced the best-simulated matches to the pressure data collected during the constant-rate pumping test and its subsequent recovery period. The nSIGHTS test simulation incorporated pre-test pressure records as "history" periods where the observed pressures were specified in the simulations. In addition to the formation properties of interest (principally T and storativity (S)), wellbore skin was also included as a fitting parameter in the pumping-test analyses so that nSIGHTS could better match the early pressure response observed during the test.

The uncertainty quantification method applied to the analyses in this report is an informal process referred to as perturbation analysis. In this process, preliminary analyses are performed in which a reasonable model-data fit (i.e., a reasonably small value of the objective function) is obtained to the specified constraints defined in the nPre configuration file. The resulting values of the fitting parameters are the *baseline solution* set -a single value for each fitting parameter that provides a satisfactory fit to the data (satisfactory being a judgment call on the part of the analyst). Perturbation analysis begins by assigning a range for further guesses in parameter space surrounding the analyst-provided baseline solution set. These parameter ranges are listed in Appendix B. Starting at the baseline value, the model parameters are randomly perturbed within their assigned ranges and a simplex optimization is performed from each of these random starting points. The objective of perturbation analysis is to sample the parameter space surrounding the analyst-provided baseline solution set to better understand the nature of modeldata fit in this portion of the parameter space. The minimum in the explored parameter space that provides the best fit to the data, measured in terms of the smallest sum of squared errors (SSE), is assumed to be the global minimum for the current conceptual model, and other minima are referred to as local minima. Local minima are effectively localized depressions in the objective function "topography" that trap the simplex algorithm during its attempt to find the global minimum - the smallest SSE. If multiple data types with different physical units are included in the match (e.g., if pressures and pressure derivatives are matched simultaneously), then the SSE values for each component are weighted and combined and the overall objective function is denoted in nSIGHTS as the fit value.

Five hundred perturbation/optimization runs were performed for each of the analyses discussed in this report. A visual assessment of parameter-space plots for each fitting variable and a visual assessment of the fits themselves were all used to determine the value of the "fit discriminant". The fit discriminant is used to reduce the perturbations under consideration to only those within the best-fit minimum, and sufficiently close to be subjectively considered "acceptable" fits. All perturbation results for which the fit value was less than the fit discriminant were deemed acceptable solutions and are included in the final range of reported values for each fitting

Figure 2. Location of the H-10cR Culebra well on the H-10 wellpad designated by a blue star.

parameter. In some cases, the original baseline solution may not fall within the global minimum defined through perturbation analysis. The final number of satisfactory perturbation results for each test is reported in the Section 3 figure captions.

3. H-10cR Analysis Results

Discussions of H-10cR and associated test analyses are given below. A summary of the best T estimates obtained from perturbation analysis of each test is shown in Table 1. The full range of T values from which the statistics in Table 1 are derived is presented as a scatter plot in the sections below and a full listing is contained within the nPost configuration file for each analysis.

	Mean S	Geometric		Log ₁₀		Variance
Tt	(-)	Mean T (m ² /s)	Geo. Mean $T (m^2/s)$	Min. <i>T</i> (m ² /s)	Max. T (m ² /s)	$(m^2/s)^2$
T 1	3.52E-06	7.41E-08	-7.15	-7.54	-6.78	4.12E-16
T ₂		9.57E-08	-7.03	-7.35	-6.74	4.54E-16
T ₃		9.90E-08	-7.01	-7.31	-6.74	4.55E-16
T ₄		1.19E-07	-6.93	-7.24	-6.66	6.42E-16
T ₅		3.03E-07	-6.52	-6.57	-6.45	2.09E-16

Table 1. Culebra Transmissivity and Storativity Estimates.

3.1. H-10cR

A physical description of the H-10cR well is detailed in Figure 3. The well is a 11" reamed bore hole with a 5.5" OD (5.125" ID) casing slotted in the Culebra. The constant-rate pumping test of the well was made possible using a 3-phase pump, a variable frequency drive, and a DAS system aboard the testing trailer. This system enacted and maintained a constant pumping rate in the well.

Fourteen purges were previously conducted in H-10cR between March 1, 2016 and May 3, 2017. Hydraulic testing of the Culebra at H-10cR was conducted over three days from July 24 to 27, 2017 using a constant flowrate of 0.35 gpm. Pressure changes were logged using two pressure transducers; one polling at 15-minute intervals and one polling at 1-minute intervals. Flow rate was recorded by the DAS at 5-second intervals. We experienced transducer-based problems with the transducer poling at 1-minute intervals. Subsequently, we did not get good testing coverage during intermittent portions of the test. Data from both transducers was integrated into a single pressure profile to represent and subsequently model pressure change in the well during testing.

The H-10cR nSIGHTS constant-rate pumping test and recovery simulations consisted of a history sequence, a drawdown sequence, and a recovery sequence chronologically in that order. Pressure-derivative diagnostics of the drawdown and Bourdet-derivative diagnostics of the recovery were used to better fit and understand the data. The details of each sequence (i.e.,

start/end time, pressure, etc.) are specified in the H-10cR.nPre files and are listed in Appendix B.1.

Investigation of the drawdown response showed distinctive rate changes we assume are attributed to the incomplete development of the well. Subsequently, transmissivity changed over time as, presumably, sediment or filter pack material was loosed from the formation and/or screened portion of the well. The initial models used to fit the data considered a simple system of single T and S with and without skin effects. These models did not adequately fit the data. Secondary attempts to model the data to account for changing transmissivity proved to be a very sensitive parameter when a single value was used; using multiple values produced a model that would not converge.

To model the changing T, a model that used an infinite-acting, radial systems with a variable T values as a function of time, wellbore storage, and a negative skin. The T(t) values of the model were designated T_1 to T_5 , chronologically. The specified H-10cR conceptual model was chosen because it was the simplest model consistent with the available information that produced an acceptable fit to the data; acceptable by consensus of the modeler. A comparison of the model fit of the T_t model and simplest, single T model are shown in Figure 3. Table 2 describes the time ranges for each T_t value. The resulting model parameter estimates required only subtle changes in the T estimate to adequately fit the data. A sand pack surrounding the screened portion of the well, and the possible presence of a fractured or damaged zone in the formation surrounding the well still warranted the inclusion of skin effects into the model especially given the low T of the well.

Figure 3. H-10cR model comparison.

Tt	Time range minimum	Time range maximum
T ₁	7/24/17 10:48	7/26/17 17:31
T ₂	7/26/17 17:31	7/27/17 7:40
T ₃	7/27/17 7:40	7/27/17 11:16
T ₄	7/27/17 11:16	7/29/17 5:16
T ₅	7/29/17 5:16	8/3/17 11:31

Table 2. Variable Transmissivity Time Intervals.

H-10cR

3. Info from BDR Drillhole H-10cR(C-3851-P0D1)

WellConfgH-10cR_asbuilt1_JBP/08292017

Figure 4. H-10cR well configuration during testing.

Figure 5. The 72-hour pumping test at H-10cR.

Figure 6. Pressure data and 359 model fits of the H-10cR pumping test.

Figure 7. X-Y scatter plot showing the transmissivity (T₁) parameter space derived from the H-10cR test perturbation analysis with fit discriminant and best fit values.

Figure 8. X-Y scatter plot showing the transmissivity (T₂) parameter space derived from the H-10cR test perturbation analysis with fit discriminant and best fit values.

Figure 9. X-Y scatter plot showing the transmissivity (T₃) parameter space derived from the H-10cR test perturbation analysis with fit discriminant and best fit values.

Figure 10. X-Y scatter plot showing the transmissivity (T₄) parameter space derived from the H-10cR test perturbation analysis with fit discriminant and best fit values.

Figure 12. X-Y scatter plot showing the all estimated transmissivities in parameter space derived from the H-10cR test perturbation analysis with fit discriminant.

Figure 14. Log-log plot showing 359 simulations of the H-10cR drawdown period pressure change and derivative response.

Figure 15. Log-log plot showing 359 simulations of the H-10cR recovery period pressure change and derivative response.

4. References

Beauheim, R.L. 2009. Analysis Plan for Hydraulic-Test Interpretations, AP-070, Revision 2. ERMS# 552209. Carlsbad, NM: Sandia National Laboratories, WIPP Records Center.

Beauheim, R.L., and G.J. Ruskauff. 1998. Analysis of Hydraulic Tests of the Culebra and Magenta Dolomites and Dewey Lake Redbeds Conducted at the Waste Isolation Pilot Plant Site. SAND98-0049. Albuquerque, NM: Sandia National Laboratories.

Beauheim, R.L., R.M. Roberts, T.F. Dale, M.D. Fort, and W.A. Stensrud. 1993. *Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Second Interpretive Report*. SAND92-0533. Albuquerque, NM: Sandia National Laboratories.

Bourget, D., J.A. Ayoub, and Y.M. Pirard. 1989. "Use of Pressure Derivative in Well-Test Interpretation," SPE Formation Evaluation, 4(2):293-302.

Bowman, D. O., R.M. Roberts. 2009. Analysis of Culebra and Magenta Hydraulic Tests Performed Between January 2005 and August 2008: Ap-070: Analysis Plan for Non-Salado

Hydraulic-Test Interpretations. Carlsbad, NM: Sandia National Laboratories, WIPP Records Center.

DeYonge, Wesley. 2013. WIPP Site Well Testing Notebook 15 (WSWT-15), ERMS #560947, Pkg #540244.

Powers, D.W., R.M. Holt, R.L. Beauheim, and R.G. Richardson. 2006. "Advances in Depositional Models of the Permian Rustler Formation, Southeastern New Mexico." *Caves and Karst of Southeastern New Mexico* (pp. 267–276). L. Land, V.W. Lueth, W. Raatz, P. Boston, and D.L. Love (eds.) 57th Annual Fall Field Conference Guidebook. Socorro, NM: New Mexico Geological Society.

Ramey, H.J., R.G. Agarwal, and I. Martin. 1975. "Analysis of 'Slug Test' or DST Flow Period Data," *Journal of Canadian Petroleum Technology*, 14(3):37-47.

Roberts, R.M., R.L. Beauheim, and P.S. Domski. 1999. *Hydraulic Testing of Salado Formation Evaporites at the Waste Isolation Pilot Plant Site: Final Report*. SAND98-2537. Albuquerque, NM: Sandia National Laboratories.

Salness, R.A. 2006. Basic Data Report for Well Plugging and Abandonment and Reconfiguration Activities for Fiscal Year 2005. DOE/WIPP 05-3326. Carlsbad, NM: U.S. Department of Energy.

Well Testing Trailer 1 Scientific Notebook Supplemental #6 (WTT1-6) 2016. Carlsbad, NM: Sandia National Laboratories, WIPP Records Center.

Appendix A – H-10cR Pumping Test – 7/24/17 to 7/27/17

Well	Borehole Diameter (in)	Inside Tubing or Casing Diamet er (in)	Culebra Interval (ft bgs)	Fluid Density (g/cm³)	Data Source Report(s)	Field Notebook
H-10cR	5.125	1.913	1354-1380	1.100	Basic Data Report for H-10cR (C-3851) (WIPP)	WSWT#19 Scientific Notebook

Start Test Time	Stop Test Time
7/24/17	7/27/17
9:43	10:11

Appendix B – nSIGHTS Listings

B.1 H-10cR nSIGHTS Listings

Control Settings

Main Settings

- -

Simulation type Simulation subtype Phase to simulate Skin zone ? External boundary	Optimization Normal Liquid yes Fixed Pressure		
I jauid Phase Settings			
Liquia 1 nase Seitings			
Aquifer type	Confined		
Aquifer horizontal permeability	Isotropic		
System porosity	Single		
Compensate flow dimension geometry	yes		
Leakage	None		
Test Zone Settings			
Test zone volume can vary	no		
Test zone compressibility can vary	no		
Test zone temperature can vary	no		
Default test-zone temperature	20.00	[C]	
Solution variable	Pressure		
Allow negative head/pressure	yes		

Parameters

Formation		
Formation thickness	26.000	[ft]
Flow dimension	2.0	[]
Static formation pressure	313.000	[psi]
External boundary radius	1000000	[m]
Formation conductivity	f(t) point	
Formation spec. storage	Optimization	

Analysis Report AP-070 Page 18 of 28 $g \in \mathbb{R}^{n}$

Skin

Radial thickness of skin	Optimization	r - 1
Minimum value	0.1	[m]
Maximum value	10.0	[m]
Estimate value	0.1456165	[m]
Range type	Linear	
Sigma	1.00000E+00	
Skin zone conductivity	Optimization	
Minimum value	1.00000E-10	[m/sec]
Maximum value	1.00000E-02	[m/sec]
Estimate value	1.04738E-06	[m/sec]
Range type	Log	
Sigma	1.00000E+00	
Skin zone spec. storage	Optimization	
Minimum value	1.00000E-10	[1/m]
Maximum value	1.00000E-02	[1/m]
Estimate value	8.53711E-03	[1/m]
Range type	Log	
Sigma	1.00000E+00	
Fluid		
Fluid density	1100.00	[kg/m^3]
Fluid thermal exp. coeff.	0.00000E+00	[1/C]
Test-Zone		
Well redius	2 155	[in]
Tubing string redius	2.135	[111]
Tubing scring radius	0.5	[11]
Numeric		
# of radial nodes	250	[]
# of skin nodes	50	[]

1.45038E-11

1.58503E-11

[psi]

[USgpm]

f(x) Points Parameters

Pressure solution tolerance

STP flow solution tolerance

Formation conductivity

Points type	f(t)	
Time #1	Optimized	
Minimum	3710054469.600000	[day]
Estimat	3710074643.825000	[day]
Maximum	3710251674.144000	[day]
Y value#1	Optimized	
Time #2	Optimized	
Minimum	3710251674.230000	[day]

Estimat	3710251818.445000	[day]
Maximum	3710302803.936000	[day]
Y value#2	Optimized	
Time #3	Optimized	
Minimum	3710302804.022000	[day]
Estimat	3710315310.396000	[day]
Maximum	3710315403.648000	[day]
Y value#3	Optimized	
Time #4	Optimized	
Minimum	3710315403.734000	[day]
Estimat	3710315957.414001	[day]
Maximum	3710466902.592000	[day]
Y value#4	Optimized	
Time #5	Optimized	
Minimum	3710466902.678000	[day]
Estimat	3710532996.835000	[day]
Maximum	3710921400.288000	[day]
Y value#5	Optimized	
X opt range type	Linear	
X opt sigma	1.00000E+00	
Y opt minimum value	1.00000E-10	[m/sec]
Y opt maximum value	1.00000E-05	[m/sec]
Y opt range type	Log	
Y opt sigma	1.00000E+00	
Parameter curve type	Linear	

Calculated Parameters

Formation	
Transmissivity	f(t)
Storativity	min/max
Minimum	7.92480E-10
Maximum	7.92480E-02
Diffusivity	f(t)

Skin Zone		
Transmissivity	min/max	
Minimum	7.92480E-10	[m ² /sec]
Maximum	7.92480E-02	[m ² /sec]
Storativity	min/max	
Minimum	7.92480E-10	[]
Maximum	7.92480E-02	[]
Diffusivity	min/max	
Minimum	1.00000E-08	[m^2/sec]
Maximum	1.00000E+08	[m^2/sec]
Skin factor	f(t)	

Test Zone

Open	hole	well-bore	storage
------	------	-----------	---------

4.69746E-08

[m^3/Pa]

[] []

. .

Grid Properties

Grid increment delta	min/max	
Minimum	0.05783	[]
Maximum	0.07880	[]
First grid increment	min/max	
Minimum	5.98570E-01	[m]
Maximum	1.26868E-02	[m]
Skin grid increment delta	min/max	
Minimum	0.02121	[]
Maximum	0.10639	[]
Skin first grid increment	min/max	
Minimum	1.17325E-03	[m]
Maximum	6.14472E-03	[m]
Skin last grid increment	min/max	
Minimum	3.24709E-03	[m]
Maximum	1.01481E+00	[m]
Increment ratio	min/max	
Minimum	5.89833E-01	[]
Maximum	3.90714E+00	[]

Sequences

Sequence: H_01

Sequence type	History	
Start time	42934.500000	[day]
Duration	5.945250	[day]
Time step type	Log	
First log step	1.15741E-07	[day]
# of time steps	250	
Туре	Curve	
Wellbore storage	Open	
Sequence: F_01		
Sequence type	Flow	
Start time	42940.445250	[day]
Duration	3.020070	[day]
Time step type	Log	
First log step	1.15741E-07	[day]
# of time steps	250	
Туре	Fixed	

Sequence: F_02

Fixed value Wellbore storage

Sequence type	Flow	
Start time	42943.465320	[day]
Duration	7.013850	[day]
Time step type	rod	
First log step	1.15741E-07	[day]
# of time steps	250	
Туре	Fixed	
Fixed value	0.0	[USgpm]

Information Only

-0.35

Open

[USgpm]

Wellbore storage

Open

Test Zone Curves

P_Curve
Pressure
H_01
H_01
Test
[psi]
no

Simulation Results Setup

Output ID		DAT
Output type		Pressure
Pressure capture	type	Test Zone
Output units		[psi]
Output ID		DAT
Output type		Flow Rate
Flow rate output	type	Well
Output units		[USgpm]

OutputFiles

XY Forward Output	
Write file ?	no
Optimization Output	
Write file ?	no

Optimization Setup

Algorithm	Simplex
Calculate confidence limits ?	yes
Covariance matrix calculations	1st Order
Fixed derivative span ?	no
Fit tolerance	1.0000E-05
Parameter tolerance	not used
<pre># of optimized variables</pre>	14
K_fm.T[01]	OK
K_fm.T[02]	OK
K_fm.T[03]	OK
K_fm.T[04]	OK
K_fm.T[05]	OK
K_fm.V[01]	OK
K_fm.V[02]	OK
K_fm.V[03]	OK
K_fm.V[04]	OK
K_fm.V[05]	OK
Skin zone conductivity	OK

Calculated Parameters Included	
Cart_DAT_P	OK
Fits to Optimize	
Radial thickness of skin	OK
Skin zone spec. storage	OK
Formation spec. storage	OK

# of	calculated	variables	included		0
------	------------	-----------	----------	--	---

Suite/Range Setup

of suite/range variables

0

Figure B-1. X-Y scatter plot showing the skin zone conductivity parameter space derived from H-10cR perturbation analysis with the fit discriminant and best fit values.

Figure B-2. X-Y scatter plot showing the skin zone specific storage parameter space derived from H-10cR perturbation analysis with the fit discriminant and best fit values.

Figure B-3. X-Y scatter plot showing the skin zone thickness parameter space derived from H-10cR perturbation analysis with the fit discriminant and best fit values.

Figure B-4. X-Y scatter plot showing the time parameter space derived from H-10cR perturbation analysis for the first transmissivity (T_1) with the fit discriminant and best fit values.

Figure B-5. X-Y scatter plot showing the time parameter space derived from H-10cR perturbation analysis for the second transmissivity (T_2) with the fit discriminant and best fit values.

Information Only

Figure B-6. X-Y scatter plot showing the time parameter space derived from H-10cR perturbation analysis for the third transmissivity (T_3) with the fit discriminant and best fit values.

Figure B-7. X-Y scatter plot showing the time parameter space derived from H-10cR perturbation analysis for the fourth transmissivity (T_4) with the fit discriminant and best fit values.

Figure B-8. X-Y scatter plot showing the time parameter space derived from H-10cR perturbation analysis for the fifth transmissivity (T_5) with the fit discriminant and best fit values.

Appendix C – File Directories

These files are located in server file-path: /nfs/data/CVSLIB/WIPP_EXTERNAL/ap070

Table C-1. The descriptions.				
File Extension	Function/Use			
<filename>.nPre</filename>	Files used for initial well test analysis.			
<filename>X.nPre</filename>	Files used to generate perturbation analysis of .nPre results.			
	Post-processing files used to visualize .nPre and perturbation			
.nPost	analysis.			
.nOpt	Optimization data used for post processing in .nPost files.			
<filename>.nXYSim</filename>	Simulation data used for post processing in .nPost files.			
<filename>FieldData.nXYS</filename>				
im	Field data used for post processing in .nPost files.			
.jpg	Graphic output from .nPost files.			
.csv,.xls, .dat	Data files used as input for .nPre files.			

Table C-1. File descriptions.

Contraction of the second	A CONTRACT OF A CONTRACTACT OF A CONTRACT OF A CONTRACT OF A CONTRACTACT	Chief Street of the	and the second	- Contract
Organize - Include in til	orary Share with Burn New fold	er		
👷 Favorites	Name	Date modified	Type	Size
📃 Desktop	🗼 jpegs	8/21/2017 3:57 FM	File folder	
🐞 Downloads) post	8-21/2017 3:57 PM	File folder	
San Recent Places	Data_merge.nPre	8:9/2017 10:21 AM	NPRE File	ØK
OneDrive	G. H-10cR C07 012517_Append_2017-08-03	8 7,2017 8:52 AM	Microsoft Excel C	481 K
	H-10cR CPUMP7_Append_2017-07-27_10	8-7/2017 8:53 AM	Microsoft Excel C.,	45 K
Libraries	H-10cR_K_time_2.nPre	8-11/2017 10:57 AM	NPRE File	40 K
Documents	H-10cR_pump_merge_nodup.csv	8/8/2017 12:24 PM	Microsoft Excel C	113 K
👌 Music				
Pictures				
Videos				
Computer				
🚢 DriveC (C:)				
CD Drive (E:) U3 System				
Removable Disk (F:)				
My Book (G:)				

Directory of G:\H-10cR pumping test

Directory of G:\H-10cR_pumping test\jpegs

Organize - Include in libr	ary Share with Burn New fol	lder		
🜟 Favorites	Name	Date modified	Туре	Size
🛄 Desktop	Cart_horsetail0006.JPG	8/18/2017 10:12 AM	JPEG image	1,126 KI
🔈 Downloads	E Drawdown_Diag0006.JPG	8/18/2017 10:21 AM	JPEG image	1,126 KI
www.Recent Places	E FV_vs_AIIT0007.JPG	8/18/2017 10:59 AM	JPEG image	1,130 Kł
ConeDrive	FV_vs_b(skin)0011.JPG	8/18/2017 10:39 AM	JPEG image	1,126 Kē
	🖀 FV_vs_K(skin)0011.JPG	8/18/2017 10:40 AM	JPEG image	1,126 K
涛 Libraries	EV_vs_S0007.JPG	8/18/2017 10:46 AM	JPEG image	1,126 Ki
Documents	EV_vs_Ss(skin)0011.JPG	8/18/2017 10:40 AM	JPEG image	1,125 Ki
J Music	E FV_vs_t(k1)0011 JPG	8/18/2017 10:37 AM	JPEG image	1,125 Ki
Pictures	EV_vs_t(k2)0011.JPG	8/18/2017 10:37 AM	JPEG image	1,126 Ki
📔 Videos	EV_vs_t(k3)0011.JPG	8/18/2017 10:36 AM	JPEG image	1,126 KE
	FV_vs_t(k4)0011.JPG	8/18/2017 10:36 AM	JPEG image	1,126 KE
Computer	EV_vs_t(k5)0011.JPG	8/18/2017 10:34 AM	JPEG image	1,125 KE
🏭 DriveC (C:)	EV_vs_T10007.JPG	8/18/2017 11:04 AM	JPEG image	1,126 K
CD Drive (E:) U3 System	EV_vs_T20007JPG	8/18/2017 11:00 AM	JPEG image	1,126 KE
Removable Disk (F:)	EV_vs_T30007.JPG	8/18/2017 11:02 AM	JPEG image	1,126 KE
My Book (G:)	EV_vs_T40007.JPG	8/18/2017 11:03 AM	JPEG image	1,126 KE
	EV_vs_T50007.JPG	8/18/2017 11:04 AM	JPEG image	1,126 KB
🖣 Network	Representation_Map.png	8/18/2017 1:46 PM	PNG image	6,790 KB
	🛋 Pressure_dataJPG0006JPG	8/18/2017 10:01 AM	JPEG image	1,126 KB
	Ecovery_Diag0006JPG	8/18/2017 10:22 AM	JPEG image	1,126 KB

rganize 👻 include in	library Share with Sum N	Date modified	Tune	Size
Favorites	1101116	Dote mounted	type	JICE
Desktop	H-10cR.nOpt	8/11/2017 11:05 PM	NOPT File	8,016
Downloads	H-10cR.nPost	8/14/2017 1:04 PM	NPOST File	27
Recent Places	H-10cR_field_data.nXYSim	8/11/2017 10:59 AM	NXYSIM File	188
G OneDrive	H-10cR_Part1.nPost	8/18/2017 10:41 AM	NPOST File	39
	H-10cR_Part2.nPost	8/18/2017 11:04 AM	NPOST File	38
Libraries	H-10cR_sim_data.nXYSim	8/11/2017 11:05 PM	NXVSIM File	24,016
J Music				
Videos				
Computer				
🏭 DriveC (C:)				
CD Drive (E:) U3 System	nn.			
CD Drive (E:) U3 System	ทา			
My Book (G)				

Directory of G:\H-10cR_pumping test\post

Acknowledgements

The author of this report would like to acknowledge Jeff Palmer and Patricia Johnson of Intera, Inc. for contributing the well configuration plot and well location map to this report.